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Outline

e Slicing deployment strategies

e Radio Access Network Slicing

* Virtual service chaining for mobile network slicing
* Problem definition
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Few considerations on network slicing

* Two slicing deployment strategies:

* Per service category
* Requires configuration of the whole metro network
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Few considerations on network slicing

* Two slicing deployment strategies:

* Per service:
* Finer granularity, more user oriented
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Few considerations on network slicing

* Two slicing deployment strategies:

* Per service:
* Finer granularity, more user oriented
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User behavior relevance

 When users belonging to slices requiring different level of reliability
move in the Radio Access Network, the Metro-Access network
should adapt to their requirements
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Integrated Optical-Wireless Reliable Slicing

* Can we integrate mobile network resiliency and Metro-Access
network protection in mobile multi-connectivity scenarios?
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Slicing in Radio Access Networks (1)

e Radio Access Network (RAN) slicing is implemented at the radio
scheduler

e Each Radio Access Point should support more than one slice
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Slicing in Radio Access Networks (2)

* MAC in mobile networks is based on Orthogonal Frequency Division
Multiple Access (OFDMA)
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Slicing in Radio Access Networks (3)

* How many users can we serve under Ultra Reliable Low Latency
Communications (URLLC) requirements?
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Virtual service chains for mobile network slicing (1) ”»
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Virtual service chains for mobile network slicing (2)
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Virtual service chains for mobile network slicing (3)

* Chaining constraints

NGC

Slice(s) .
traffic Aa slice 1

ice(s)

ra __ Nee—

DU

Cell traffic _gSS=ug

Slice 2

o — UCDAVIS

15



Service chains protection

* Whenever a RU hosts a slice with reliability requirements we need to
implement a protection mechanism for the service chain the RU
belongs to

RU 10G DU Cell traffic CU Cell traffic

NGC

Cell traffic

traffic
End-to-end protection

* Node disjointness
* Link disjointness
D Reliability requirements

G No reliability requirements
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Service chains protection
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Problem definition (1)

We focus on static design
* Input
e Substrate network
e Slicing requests
* Users
* Aset of service chains (RRU-DU-CU-NGC)
* Wireless connectivity of users

* We provision a primary path for all
the service chains for all the slices

* We provision a backup path for all the chains
with reliability requirements

 We individuate User-RU assignment

* Objective
* Maximize the number of protected users
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Problem definition (2)

* Objective:
 Maximize the number of protected users
* Such that:
 Each RU has a primary path
* RUs serving reliable users have backup path
Placement constraints
* VNF disjointness
Routing constraints
* Link disjointness
* Flow-conservation constraints virtual-links
* Flow-conservation constraints lightpaths
Capacity constraints
* Lightpaths capacity
 Computational capacity
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Thank you
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Backup slides
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ILP Modelling (1)

* Input and variables

G3(N®,E®) | Substrate Network
G°(N€ E¢) | Service chain demands
Xij An integer variable denoting the number of lightpaths from substrate node i to j
pfl.c.'l A nonnegative variable denoting the traffic flow of the primary virtual link [ in service chain ¢
going through lightpath(s) or meta-edge (i, j)
bfl.c.'l A nonnegative variable denoting the traffic flow of the backup virtual link [ in service chain ¢
going through lightpath(s) or meta-edge (i, j)
DPéw A binary variable denoting whether virtual primary node a of service chain ¢ is mapped onto
substrate node w
bsew A binary variable denoting whether virtual backup node a of service chain c is mapped onto
substrate node w
Zrir];n An integer variable denoting the number of lightpaths from substrate node i to substrate
node j going through the fiber link (m,n)
Ty, A binary variable denoting whether user u is protected
Sur A binary variable denoting whether user u is served by RU r
Wy r A binary parameter denoting whether user u has connectivity tu RU r
e Npp Maximum number of users with reliability requirements per RU
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ILP Modelling (2)

* Objective:

Maximize Z Ty,

u

S. Zhang, L. Shi, C. S. K. Vadrevu, and B. Mukherjee, “Network virtualization over WDM and flexible-grid
optical networks,” Optical Switching and Networking, vol. 10, no. 4, pp. 291-300, 2013.

A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, and A. Pattavina, “Protection strategies for virtual network
functions placement and service chains provisioning”, Networks, vol. 70, no. 4, pp. 373-387, 2017.
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ILP Modelling(3)

* Placement constraints

ngw =1Vc,a
w

Psw sy <1 Vc,Va:a+ EP(c)
biw =1 -2 R,=1Va:a=SP(c)

Psw = P55,V c,a,Vw€E N3

biw =bSqVec,a,Vwe€EN?®
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ILP Modelling(4)

* Routing constraints

by if (sinkofl)=j
ZP ZP o = —bf if (sourceof )=j Vclj

0 otherwise

by if (sinkofl)=j
bei?l —bejci’l = {—bf if (sourceof ) =j Vclj
i i

0 otherwise

Xij lfm=l

0 otherwise
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ILP Modelling(5)

* Capacity constraints

Zpﬁ?’%beﬁ.'l <C xX; Vij
c,l c,l

Z pfac(ﬁ < B¢ x p¢,, V ¢ and metaedge aw
l

Z bfS < B¢ x bE, V ¢ and metaedge aw
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ILP Modelling(6)

* Wireless constraints
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Thank you
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