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* Why machine learning in optical networks?
* Machine learning techniques in optical networks

* Routing and wavelength assignment using machine learning
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Machine Learning: Overview

* Machine learning (ML): by giving access to right data, machines can

learn by themselves how to solve a specific problem [1]

e Optical network context: supervised learning, unsupervised learning,

and reinforcement learning
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Supervised Learning

Training Phase

A=1550, path= nodes A-C-D-G-F,
Machines predict output L
A=1553, path= nodes B-G-D-F-E,

of unseen inputs based on Mod = QPSK, 9 BER=102
experience learned from
training data set

Active Phase

Create path: A= 1553, nodes A-C-D-G-F, A&:

Mod QPSK = BER=?
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Unsupervised Learning

Finding structure hidden in
collections of unlabeled data [2]

Data:
A=1550, path= nodes A-B-D-E, Mod = QPSK, BER=10®
Anomaly
A=1553, path= nodes A-C-D-G-F, Mod = BPSK, BER=10* detection
A=1544, path= nodes C-D-E-F, Mod = DPQPSK, BER=10" for link C-D
A=1545, path= nodes B-D-G-F-E, Mod = 16-QAM, BER=10"
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Reinforcement Learning

tat \
state
B
reward iG

+ 4 A

Learning to what to do in order
to maximize reward [2]

action C

Agent ]

Environment ~ J

initial state mm

A=1550, nodes A-B-E-H,  Change: Mod DPQPSK BER= 102
Mod QPSK, BER=103

A=1550, nodes A-B-E-H,  Change: power output BER= 102 -1
Mod QPSK, BER=103 channel +5 dBm
A=1550, nodes A-B-E-H,  Change: Mod BPSK BER= 10+ +1

Mod QPSK, BER=103
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Machine Learning in Optical Networks

* Motivation and feasibility:

»Increased complexity (many parameters): e.g., coherent technology, EON,

nonlinearity

»Widely available data: e.g., traffic traces, signal quality indicator

* Cross-layer approach: physical layer and network layer
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Framework of ML in Optical Networks
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ML-Based RWA in WDM Optical Networks

* Routing and Wavelength Assignment (RWA):

» Design an optical network for a traffic matrix

» Re-optimize due to dynamic traffic changes
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ML-Based RWA in WDM Optical Networks

* Solution for RWA problems:

» Integer Linear Programming (ILP)
Mixed-Integer Programming (MIP)
Relaxation

Heuristic
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Machine learning
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ML-Based RWA in WDM Optical Networks
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These relations can be formulated as a supervised learning problem

UCDAVIS
NETWORKS RESEARCH LAB 3] Martin ef al., “Machine Learning-Based Routing and Wavelength Assignment in Software-Defined Optical Networks,” IEEE
Transactions on Network and Service Management, vol. 16, no. 3, pp. 871-883, Sept. 2019.

11



ML-Based RWA in WDM Optical Networks

Machine Learning Routing Computation
Traffic Matrix Acquisition Data Storage Model Training
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