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Chapter 1:
Background
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Urbanization
Population trend:

• World urban population: 55% in 
2018, 68% in 2050 (expected)

• In U.S., urban population: 82% in 
2018 (Source: United Nations)
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Energy crisis:

Pollutions:

Source: Indianfolk.com

Source: medicaldaily.com

Issues:

• Uncontrolled growth of urban population

• Limited natural and man-made resources

Solution: Smart cities



• Smart cities: effective approach 
to manage limited resources to 
serve largest possible population 
in order to improve:

Livability,

Workability,

and Sustainability [1]

5

Smart Cities: Definition and Components

[1] S. P. Mohanty, U. Choppali, and E. Kougianos, "Everything you wanted to know about smart cities: The Internet of things is 
the backbone,“ IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60-70, July 2016.

Smart city components [1]
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Smart Cities: Design Challenges

[1] S. P. Mohanty, U. Choppali, and E. Kougianos, "Everything you wanted to know about smart cities: The Internet of things is 
the backbone,“ IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60-70, July 2016.

[2] S. A. Shah, D. Z. Seker, M. M. Rathore, S. Hameed, S. Ben Yahia, and D. Draheim, "Towards Disaster Resilient Smart Cities: 
Can Internet of Things and Big Data Analytics Be the Game Changers?,“ IEEE Access, vol. 7, pp. 91885-91903, 2019.

Reliable communication as one of design challenges [1], [2]



Increasing Role of Metro Optical Networks

7[3] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2014–2019,” White Paper, 2015.
[4] IHS Markit, “Trends in metro optical networks,” Report Excerpts, 2018.

Metro traffic growth [3]

Metro takes center stage [4]

CY: Calendar Year

• 66% total IP traffic in 2019 [3]

• Metro hardware revenue surpasses long haul’s [4]



Emerging Services

More stringent requirements for:

Bandwidth

 Latency

Reliability: For example, uRLLC in 5G requires 
99.999% (five nines) availability [5]

8[5] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, "NR: The New 5G Radio Access Technology," IEEE Communications 
Standards Magazine, vol. 1, no. 4, pp. 24-30, Dec. 2017.

Reliability in metro optical networks is 

gaining importance, particularly in the 

context of smart cities 
New services



Reliability in Next-Generation Metro Optical Networks
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[6] S. Ferdousi, M. Tornatore, S. Xu, Y. Awaji, and B. Mukherjee, "Slice-Aware Service Restoration with Recovery Trucks for 

Optical Metro-Access Networks,“ Proceedings of Global Communications Conference (Globecom), Dec. 2019.

Technology enablers:

 Software-Defined Networking

 Network Functions Virtualization

 Network Slicing

Next-Generation Metro Optical Network Architecture [6]

Resiliency strategies must be 
adapted to the new architecture 
and enablers

Disasters may disrupt services



• Disruption of multiple links and nodes

• Cascading:
horizontal (optical layer)
vertical (higher layers)

• We focus on link failures (higher 
probability [8])
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Disaster Failure Characteristics

[7] B. Mukherjee, M. F. Habib, and F. Dikbiyik, “Network adaptability from disaster disruptions and cascading failures,” IEEE
Communications Magazine, vol. 52, no. 5, pp. 230-238, May 2014.

[8] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers: measurement, analysis, and
implications,” Proceedings of ACM SIGCOMM, vol. 41, no. 4, Aug. 2011.

Cascading failures in optical networks [7]



Network Connectivity (NC)

• Reachability of every network 
node from all other nodes

• Default metric for network 
survivability

• In case of disasters, NC may 
not be possible
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Scenario where NC is not possible [9]

[9] M. F. Habib, M. Tornatore, and B. Mukherjee, “Fault-tolerant virtual network mapping to provide Content Connectivity 
in optical networks,” Proceedings of Optical Fiber Communication Conference (OFC), Mar. 2013.



Increasing Role of Content Delivery Networks (CDN)
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Content connectivity -> Service continuity (most applications)

[10] Cisco, “Cisco Visual Networking Index: Forecast and Trends 2017–2022,” White Paper, Feb. 2019.

By 2022, CDN traffic: 72% [10] 



Content Connectivity

 Reachability of content from 
every node in a network under 
a given failure scenario [9]

 Important survivability metric 
 Possible in some scenarios NC 

impossible
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[9] M. F. Habib, M. Tornatore, and B. Mukherjee, “Fault-tolerant virtual network mapping to provide Content Connectivity 

in optical networks,” Proceedings of Optical Fiber Communication Conference (OFC), Mar. 2013.

Content Connectivity is guaranteed after disaster [9]

Lincoln, NE
Chicago, IL

Columbus, OH

Dallas, TX
Birmingham, AL

Frankfort, KY

Washington, D.C.

Princeton, NJ

Content available at all DCs



Mapping With Content Connectivity
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Logical topology

Physical topology

2-3 link failure disconnects 3 from content

Content-connected against single link failures

Optimization problem



Chapter 2:
Logical Network Mapping With Content 

Connectivity Against Multiple Link Failures in 
Metro Optical Networks

(Preliminary results in this chapter have been submitted to ANTS 2019)
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• Cut: partition of the network into two 

disconnected segments (e.g., two node 

groups ଵ and ଶ)

• Cutset: set of links with one endpoint in ଵ

and the other in ଶ
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Cut and Cutset of a Network

 ଵ is a cut
 ଵ

 ଶ

 {18-49, 12-49} is a cutset

ଵ

ଵ

ଶ

Logical topology



Network Cutset and Content Cutset

• Network Connectivity (NC) cutset:
 ଶ

Removal all links in ଶ violates NC 

• Content Connectivity (CC) cutset:
 ଷ

Removal all links in ଷ disconnects 
node 6 from content
Nodes co-located with datacenters are 

content-connected
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Logical topology

ଶ ଷ

Content available at all DCs



Given:
Logical topology
Physical topology
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Problem Statement

Output:
Mapping with content 

connectivity after link failures

Objective:
Minimize network resource usage



• : Network Connectivity (NC) after failures on physical links

• : Content Connectivity (NC) after failures on physical links
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Problem Notations



• ௉ ௉ ௉ : physical topology (graph)

• ௉: set of physical nodes

• ௉: set of physical links

• ௅ ௅ ௅ : logical topology (graph)

• ௅: set of logical nodes

• ௅: set of logical links
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Input Parameters

• : set of Datacenter, ௅

• ௜௝: number of fiber from to 

• : number of wavelength/fiber 

• : number of physical link failures

• ௡: set of physical links

• ௖௖: set of content-connected 

cutsets (next slides)



: Set of Physical Links 
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• Number of physical nodes: ௉ ௉ , where set cardinality

• Number of physical links: ௉ ௉

• Select links out of ௉ links: Combination without order and 

repetition

• Total number of valid sets:

௉

௉



: Set of Content-Connected Cutsets 
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• Number of logical nodes: ௅ ௅

• Number of logical links: ௅ ௅

• Content-Connected (CC) cutset:
 C4 (for example)
 ଵ

 ଶ ௅ ଵ

 ଵ

• ஼஼: enumeration of all CC cutsets Logical topology

C4

For example, this logical topology 
has 30 CC cutsets



CC- Existence

Theorem 1: Given ௉ ௉ ௉ , ௅ ௅ ௅ , and , to find the mapping of 
௅ over ௉ that guarantees CC- , the following conditions must be 

satisfied:

 each logical node ௅ has a nodal degree , and

 each physical node ௉ has a nodal degree .
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no CC-2 solution for node 

logical link logical link

no CC-2 solution mapped over node 

physical link physical link



Problem Variable

• Variable definition (binary):

 ௜௝
௦௧ if logical link is mapped over physical link 

 ௜௝
௦௧ otherwise

24

For example: 𝑓ଵ଺
ଵହ = 𝑓଺ହ

ଵହ = 1,  𝑓௜௝
ଵହ = 0, ∀ij ∉ {16,65} 



CC- Enforcement

Theorem 2: Given ௉ ௉ ௉ , ௅ ௅ ௅ , , let ௡ ௡
௞

௡
௞

௡
௞

௉ be set of all possible combinations of distinct physical 
links, and ஼஼ ஼஼

௟
௟ ௅ ௟ ௟ be set of logical 

topology content-connected cutsets where the removal of all logical 
links in each cutset ஼஼

௟ disconnects ௅ and divides ௅ into two disjoint 
sets with one set without datacenters, the mapping of ௅ over ௉ is 
CC- if and only if:

௜௝
௦௧

஼஼
௟

௡
௞

௡ ஼஼
௟

஼஼௜௝∈௉೙
ೖ,௦௧∈஼಴಴

೗ .
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CC- Enforcement
Theorem 2: Example (survivable against 3 link failures)

𝑆ଵ ∩ 𝐷 = ∅ 𝑆ଶ

𝐶ହ𝐶ହଵ

𝐶ହଶ

𝐶ହଷ

𝐶ହସ

𝐶ହହ

Content-Connected Cutset 𝐶ହ

Physical links

𝐹ଵ

𝐹ଶ

𝐹ଷ

𝐹ସ

mapping

Target: CC-3 (𝑛 = 3)

𝐹ଵ

𝐹ଶ

𝐹ଷ

𝐹ସ

𝐶ହଷ

𝐶ହସ

𝐶ହଵ

𝐶ହଶ

𝐶ହହ

CC-3 not survivable

𝑛 = 3
𝐹ଵ

𝐹ଶ

𝐹ଷ

𝐹ସ

𝐶ହଷ

𝐶ହସ

𝐶ହଵ

𝐶ହଶ

𝐶ହହ

CC-3 survivable

𝑛 = 3

survivable link

Repeat for all possibilities in networks



Objective function:

௜௝
௦௧

௜௝∈ாು, ௦௧∈ாಽ
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Mathematical Formulations of CC- Problem

Subject to:
• ௜௝

௦௧
௜௝ ௉௦௧∈ாಽ

• ௝௜
௦௧

௝:௝௜∈ாು ௜௝
௦௧

௝:௜௝∈ாು

௉ ௅

• ௜௝
௦௧

௖௖
௟

௜௝∈௉೙
ೖ,௦௧∈஼೎೎

೗

௡
௞

௡ ௖௖
௟

௖௖

Capacity Constr.

Flow Constr.

CC- Constr.

Result in an ILP

 Lower complexity



Illustrative Numerical Examples
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Physical Network: Modified Telecom Italia Network 

Logical topologies

 Physical network: 52 nodes, 98 bidirectional 
links

 Logical topologies: 7 nodes, 10 bidirectional 
links (a), and 11 bidirectional links (b) 
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Illustrative Numerical Examples
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Protection scenarios

20
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100

CC-1 CC-2 NC-1+CC-2 NC-2

Logical topology 1

Logical topology 2 Ongoing: generalizing scenarios
NC > CC
NC = CC
NC not possible but CC possible
DC location impact

[10] M. F. Habib, M. Tornatore, and B. Mukherjee, “Fault-tolerant virtual network mapping to provide 
Content Connectivity in optical networks,” Proceedings of OFC, Mar. 2013.

[11] A. Hmaity, F. Musumeci, and M. Tornatore, "Survivable virtual network mapping to provide content
connectivity against double-link failures," Proceedings of DRCN, Mar. 2016.

Our new approach is more 
generic (arbitrary ) and more 
scalable than those in [10], [11] 
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• Variable (only one): ௜௝
௦௧

• ௜௝
௦௧

௜௝ ௉௦௧∈ாಽ

• ௝௜
௦௧

௝:௝௜∈ாು ௜௝
௦௧

௝:௜௝∈ாು

௉ ௅

• ௜௝
௦௧

௖௖
௟

௜௝∈௉೙
ೖ,௦௧∈஼೎೎

೗

௡
௞

௡ ௖௖
௟

௖௖

Capacity Constr.

Flow Constr.

CC- Constr.

Number of Variables and Constraints
# variables: ௉ ௅

# constr.: ௉

# constr.: ௉ ௅

# constr. ( ): ௡ ௖௖

Totally, 3,920 variables, 574,536 constraints (𝒏 = 𝟐)

Note: Physical topology + Logical topology 1

Sum up
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Number of Variables and Constraints Comparison

Scenarios
Previous works This work

# Variables # Constraints # Variables # Constraints

NC-1 3,920 [13] 25,932 [13] 3,920 25,932 

CC-1 90,220 [11] 90,423 [11] 3,920 7,116 

CC-2 8,116,420 [12] 64,297,083 [12] 3,920 574,536

NC-1+CC-2 8.116,420 [12] 64,297,083 [12] 3,920 599,232 

NC-2 NA NA 3,920 2,409,096 

[11] M. F. Habib, M. Tornatore, and B. Mukherjee, “Fault-tolerant virtual network mapping to provide Content Connectivity in 
optical networks,” Proceedings of OFC, Mar. 2013.

[12] A. Hmaity, F. Musumeci, and M. Tornatore, "Survivable virtual network mapping to provide content connectivity against 
double-link failures," Proceedings of DRCN, Mar. 2016.

[13] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: a new approach to the design of WDM-based networks,” 
IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 800–809, May 2002.

# var and # constr. reduced 
by factor of 23 and 12

# var and # constr. reduced 
by factor of 2 × 10ଷ and 
112

Note: Physical topology + Logical topology 1

# Variables independent of 𝑛

Slowly increasing



Chapter 3:
Ongoing and Future Research
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Non-Uniform Risk Probability
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Source: earthmagazine.org

Source: earthquake.usgs.gov

 Info from various sources (i.e., geology,  climatology,  transportation,  
and environmental science) should be used to determine probability

 Equipment failure probability due to disasters depends on distance 
to disaster epicenter, link length, intersection with disaster region 



Customer:
Require content connectivity 

for set of nodes (e.g., offices)
Demand survivability against 

large-scale failures
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Flexible Content-Connectivity Protection Plan

Operator:
Must satisfy customer’s 

requirements
Question: Fixed logical topology?

Flexible Content Connectivity Protection:
Optimally design (lowest cost) logical topology with options
Add more datacenters
Add more logical links



Dummy Node Approach for Content Connectivity

• CC- : Find link-disjoint 
paths from content-requesting 
node (node 1) to dummy node 
through datacenters

• We expect fast optimal 
solutions (higher scalability)  
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Deferred Protection for Content Connectivity

Primary

Time

BW

Backup

Major delay of a large file transmission: ௉௔௖௞௘௧ ௦௜௭௘

௅௜௡௞ ஻ௐ

௅

஻
(s)   

Do we need content connectivity protection for entire ? 

Primary

Time

BW

Backup

finished

released

 Save network resources
Normal protection

Deferred protection
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Backup Slides
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CC-1 CC-2 NC-1+CC-2 NC-2

Logical topology 1

Logical topology 2

Why NC-1 (Topo 1) > NC-1 (Topo 2)? 

Logical topologies

 40-45 link makes topology hard to be 
disconnected

 6 wavelength channels for 40-45
 But save 8 wavelength channels for other 

links taking shorter paths (less strict 
conditions)

 NC-1 (Topo 2): 2 wavelength channels less



Scenarios Where NC = CC 
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Logical topo

Physical topo

Logical topo

Physical topo

NC-1: Cost 14 WLCs

CC-1: Cost 12 WLCs

NC-1: Cost 14 WLCs

CC-1: Cost 14 WLCs

 CC < NC
 DCs fanned out
 Overlapping (i.e., link 5-6)

 CC = NC
 DCs inner part


