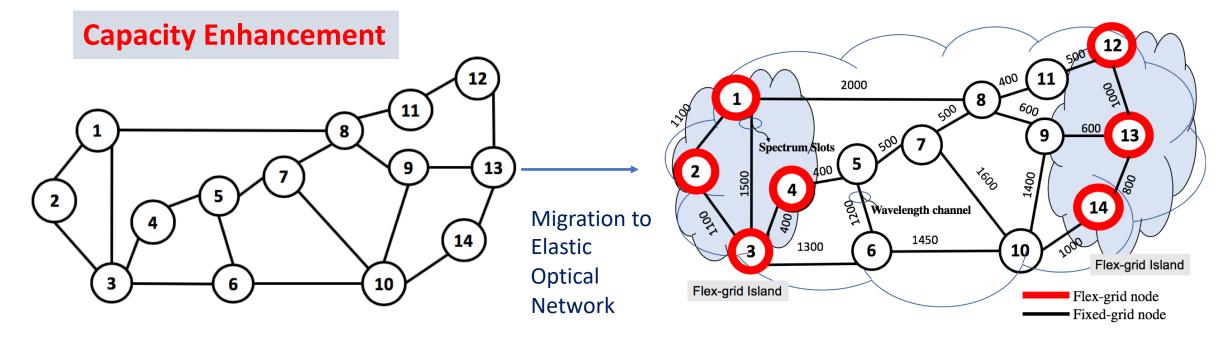
Migration from C to C+L Band


Tanjila Ahmed

NetLab Group Meeting

Friday, October 25, 2019

1

Migration from C to C+L Band

What else can be done to increase network capacity? Increase the spectrum from C (5 THz) to C+L (10 THz) band

Migration from C to C+L Band

C + L Benefits:

- 1. Attenuation co-efficient variation is negligible
- 2. Inline EDFA can be tuned to amplify L band
- C + L Drawbacks:
- Higher nonlinear interference (NLI) due to inter-channel raman scattering (ISRS)
- 2. Limited OSNR

Name	0	E	S	С	L		
Wavelength range (nm)	1260-1360	1360-1460	1460-1530	1530- 1565	1565-1625		
C-band system				35 nm			
C+L-band system				4	95 nm		
Average fiber loss [dB/km]	0.36	0.28	0.22		0.18		
Multi-band	 365 nm 						

Fig. 1. Low loss transmission bands of single mode fiber.

A. Napoli et al., "Perspectives of Multi-band Optical Communication Systems," *Proc., Opto-Electronics and* 10/27/19 *Communications Conference (OECC)*, June 2018.

Biased Traffic Matrix

• Probability Mass Functions based on Gravitational Model

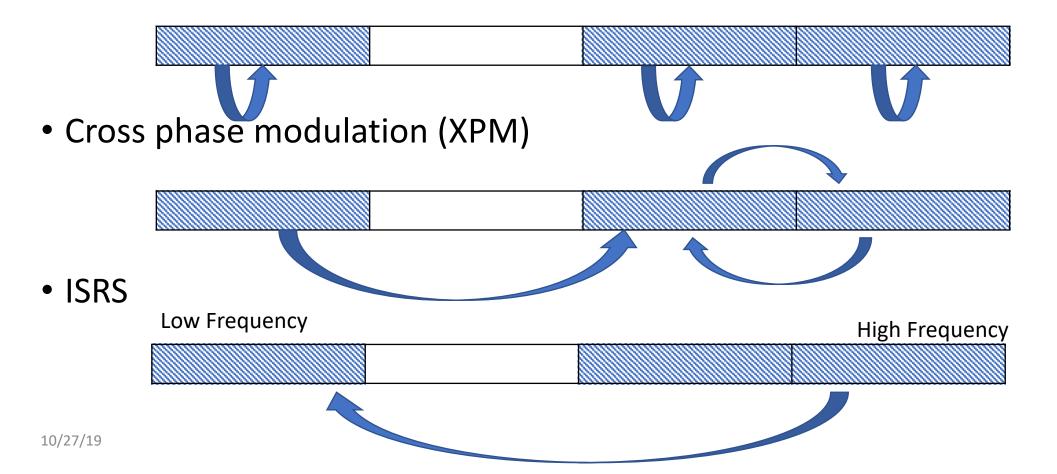
	Seattle	Palo Alto	San Diego	Salt Lake City	Boulder	Houston	Lincoln	Champaign	Pittsburgh	Atlanta	Ann Arbor	Ithaca	Princeton	College Pk
Seattle	0	0.1119041	0.1667369	0.1688483	0.07299	0.0571824	0.0387771	0.0202173	0.0173859	0.0168271	0.0150814	0.0128297	0.0112556	0.0090996
Palo Alto	0.0501523	0	0.1228368	0.0215922	0.0081419	0.0086807	0.0042797	0.0020199	0.0017312	0.0018189	0.0014932	0.0012841	0.0011286	0.0011204
San Diego	0.4499745	0.7396726	0	0.4560375	0.2251454	0.2955089	0.0964943	0.0486641	0.041364	0.0548508	0.032564	0.0277	0.0267506	0.0199513
Salt Lake City	0.1453278	0.0414671	0.1454442	0	0.1498184	0.0446563	0.0437538	0.0142163	0.0101714	0.0103808	0.009486	0.0071115	0.0060602	0.0045821
Boulder	0.0310477	0.0077276	0.0354873	0.0740421	0	0.0426997	0.0698774	0.013794	0.008301	0.0092446	0.0083327	0.0054529	0.0046617	0.0036234
Houston	0.2262866	0.0766491	0.4333221	0.2053181	0.3972422	0	0.503979	0.3516066	0.2205135	0.6595924	0.1740787	0.1290303	0.1291979	0.1120006
Lincoln	0.0082568	0.0020333	0.0076134	0.0108243	0.0349789	0.0271176	0	0.0234675	0.0083831	0.0083355	0.0102101	0.0048557	0.0038594	0.0031026
Champaign	0.0101981	0.0022735	0.009096	0.0083317	0.0163577	0.0448185	0.0555941	0	0.0651589	0.0409409	0.0931172	0.0224431	0.0196852	0.0178543
Pittsburgh	0.0259945	0.0057754	0.0229166	0.017669	0.0291775	0.0833148	0.0588642	0.1931349	0	0.125633	0.497588	0.4941719	0.4099824	0.5464622
Atlanta	0.0347024	0.00837	0.0419158	0.0248731	0.0448202	0.34374	0.0807326	0.1673833	0.1732891	0	0.1168517	0.083452	0.0992755	0.1091033
Ann Arbor	0.0116129	0.0025654	0.0092914	0.0084865	0.0150841	0.0338725	0.0369226	0.1421449	0.256262	0.0436297	0	0.0730482	0.0459805	0.0443776
Ithaca	0.0021865	0.0004883	0.0017493	0.0014082	0.0021848	0.0055569	0.0038865	0.0075828	0.0563294	0.0068965	0.0161679	0	0.0920536	0.0312159
Princeton	0.0018979	0.0004246	0.0016714	0.0011872	0.0018479	0.005505	0.0030562	0.0065803	0.0462362	0.0081169	0.0100688	0.0910754	0	0.0975067
College Pk	0.0023621	0.000649	0.0019191	0.0013819	0.0022112	0.0073468	0.0037823	0.009188	0.0948744	0.0137328	0.0149602	0.0475453	0.1501088	0

Questions to be Answered

- Which links should be migrated to C+L?
- When to migrate?
- How many links should be migrated?
- How to handle the non-linear interference generated by additional spectrum?

Inter-Channel Stimulated Raman Scattering (ISRS)

• Power transfer between high-frequency optical signal to lowfrequency optical signal sharing the same fiber that amplifies lowfrequency signals and depletes higher-frequency ones


ISRS gain at frequency f,

$$o(z, f) = \frac{P_{\text{tot}}e^{-\alpha z - P_{\text{tot}}C_r L_{\text{eff}}f}}{\int G_{\text{Tx}}(\nu)e^{-P_{\text{tot}}C_r L_{\text{eff}}\nu} d\nu}.$$

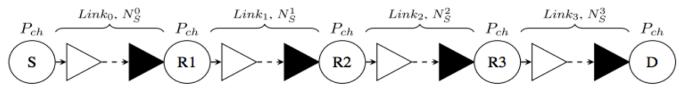
 P_{tot} is the total signal power, G_{Tx} is the power spectral density, C_r is the Raman gain slope, α is the attenuation, L_{eff} is the effective length

Nonlinear interference (NLI)

• Self phase modulation (SPM)

Link Margin (LM)

Link Margin in optical networks is the difference between the quality metric of a signal (OSNR, BER), and the threshold value above which it can be recovered error-free

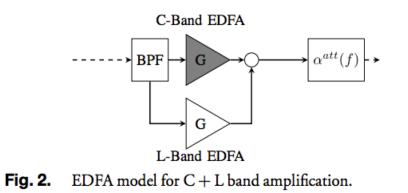

- Important for error-free performance and commitment on SLA
- Determined using conservative data for beginning-of-life (BOL) and end-of-life (EOL) performance
- Conservative assumptions (High LM) reduces overall network capacity and efficiency
- It further limits network capacity adding to NLI of C+L

Solution: live network data and traffic forecasting for accurate dynamic margin requirement

Proposed OSNR Estimation Model

- Multiple ROADMs, optical links and EDFA
- In line EDFA compensates for previous span loss + compensates ISRS gain
- Amplified spontaneous emission (ASE) : noise from EDFA and ROADM
- NLI: self-phase modulation + cross-phase modulation + ISRS gain

$$\frac{1}{\text{OSNR}(f)} = \sum_{i=0}^{N_L - 1} \left(\frac{P_{\text{ASE}}^i(f) + P_{\text{NLI}}^i(f)}{P_{\text{ch}}} \right) + \left(\frac{P_{\text{ASE}}^R}{P_{\text{ch}}} \right) N_R$$


Fig. 1. Multihop path for OSNR estimation.

A. Mitra, D. Semrau, N. Gahlawat, A. Srivastava, P. Bayvel, and A. Lord, "Effect of reduced link margins on C + L band elastic optical networks," *J. Opt. Communication Networks*, vol. 11, no. 10, pp. C86-C93, Sept. 2019.

9

Proposed EDFA Noise Model

- Fixed gain + frequency-dependent attenuation
- BPF separates C and L frequencies

Lightpath Provisioning Method

• Effect of reducing LM is observed across geographically diverse networks:

Notwork Link Dimonsions

Network Link Dimensions							
Network	Min	Max	Avg				
BT-UK	2 km	686 km	147 km				
Pan Europe	218 km	783 km	486 km				
USA-NSFNET	282 km	3482 km	1319 km				

- 3000, 100 Gbps demands are considered, selecting source and destination with uniform distribution
- For every new 100 Gbps demand, goal is to carry it over an operational lightpath that has an unused capacity of 100 Gbps between same source and destination

Lightpath Provisioning Method

Before allocating a 100 Gbps demand,

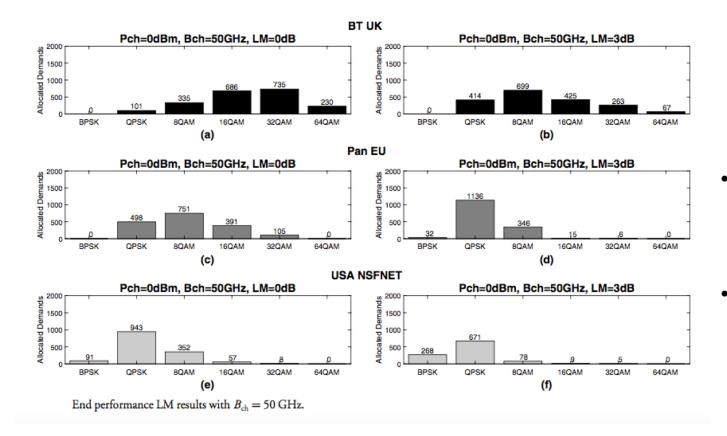
- Single shortest path is found
- Network OSNR estimation model is used to predict OSNR of the lightpath
- Modulation formats selected based on calculated OSNR & OSNR threshold
- After new lightpath allocation, OSNRs of active lightpaths sharing same link are updated
- An attempt is made to re-accommodate demands of any degraded lightpath

OSNR Threshold			
Modulation	Data Rate (Gbps)	OSNR Threshold	PM-QPSK = 25 (symbol/sec) * 2 (bit/symbol) *2 (polarization) = 100 Gbps
PM-BPSK	50	9 dB	PM-16QAM = 25 * 4 * 2 = 200 Gbps
PM-QPSK	100	12 dB	DM DDCV = 2C * 1 * 2 = CO Chas
PM-8QAM	150	16 dB	PM-BPSK = 25 * 1 * 2 = 50 Gbps
PM-16QAM	200	18.6 dB	PM-32QAM = 25 * 5 * 2 = 250 Gbps
PM-32QAM	250	21.6 dB	
PM-64QAM	300	24.6 dB	PM-64QAM = 25 * 6 * 2 = 300 Gbps

Benefit of Operating at Lower LM

- Number of allocated 100 Gbps demands are listed for each B_{ch} and LM until 10% of demands are blocked for high signal power.
- Capacity Benefits of reducing LM:
 - BT-UK, 27.5 & 28.5%
 - Pan Europe, 156.7 & 119.6%
 - USA-NSFNET, 130.7 & 264.6%

Number of Allocated 100 Gbps Demands with Increasing LM at P _{ch} = 0 dBm for 10% Blocking Performance									
B _{ch}	BT	UK	Pan H	urope	USA-NSFNET				
	LM = 0 dB	LM = 3 dB	LM = 0 dB	LM = 3 dB	LM = 0 dB	LM = 3 dB			
50 GHz 37.5 GHz	1501 2031	1177 1580	1230 1562	479 711	526 671	228 184			


Large dimension of the network is the limitation of USA-NSFNET.

Benefit of Operating at Lower LM

- Avg link length of USA-NSFNET is 1319 km
- Significant ASE noise and NLI is experienced
- NLI is higher for 37.5 GHz channels and high transmit power
- Majority of lightpath requests are blocked due to lack of sufficient OSNR
- Or, they require PM-BPSK, which needs two contiguous slots to be a single lightpath
- If they are allocated they degrade OSNR of other active lightpaths

Solution for larger networks can be adding regenerators!

Benefit of Operating at Lower LM

- The more the traffic carried by the network, the more blocking there is likely to be, then the benefit of reducing LM will be less visible.
- However, reducing LM will typically boost the network capacity.

Effect of Launch Power on Network Performance with a Given LM

• ISRS process depends upon the transmit power P_{ch}

$P_{ m ch}$	BT	-UK	Pan I	Europe	USA-NSFNET		
	$B_{\rm ch} = 50 \mathrm{GHz}$	$B_{\rm ch} = 37.5 \mathrm{GHz}$	$B_{\rm ch} = 50 {\rm GHz}$	$B_{\rm ch} = 37.5 \mathrm{GHz}$	$B_{\rm ch} = 50 { m GHz}$	$B_{\rm ch} = 37.5 \mathrm{GHz}$	
0 dBm	2087	2387	1745	2043	1451	1737	
−1.25 dBm	2145	2468	1782	2101	1628	1944	
−3 dBm	2147	2468	1803	2140	1749	2024	

Table 6. Number of Allocated 100 Gbps Demands with Decreasing P_{ch} at LM = 0 dB for End Performance

For USA-NSFNET, capacity increases by 20% and 16% for 50 and 37.5 GHz respectively as P_{ch} is reduced by 3 dB. Network starts operating with lesser NLI and more operational lightpath.

When NLI is not high (in smaller networks), decreasing P_{ch} too much can reduce OSNR of operating lightpaths

Summary

- Lower LM results in higher capacity
- The more the active channels the more NLI is generated
- NLI depends upon network dimension and launch power
- For smaller network reducing launch power does not significantly benefit the network capacity unlike larger ones
- Overall, C+L band system brings higher capacity benefits at low margins, given the complex effects of NLI
- Operators need to consider launch power, network dimensions, and current spectrum occupancy.

Questions to be Answered

- Which links should be migrated to C+L?
- When to migrate?
- How many links should be migrated?
- How to handle the non-linear interference generated by additional spectrum?
- Given the traffic matrix, NLI model, network dimension, current spectrum occupancy, find where on the network a migration from C band to C+L band can be obtained.