

New Architectures for Photonic Firewall

Speaker: Ying Tang 02/07/2020

WISDOM Architecture

Advantages:

- > WISDOM operated at 42.6 Gbps which was good for DWDM.
- Using SOA which is off the shelf.

Drawbacks:

- Operation beyond 100 Gbps is desirable now (1 Tbps).
- Device needs to be passive (conserve energy).
- Reduce the pattern matching time.

Parallel Recognition System

This architecture reduce the pattern matching time.
The limitation of data rate is still remaining.

X. Li et al., "Parallel All-Optical Binary Recognition System for Short Sequence Detection Applied in Photonic Firewall," in *Asia Communications and Photonics Conference (ACP)*, Chengdu China, November 2019. **3**

Why HNLF?

- The carrier recovery time is limited by the stimulated emission process.
- The processing data rate is also limited.

XPM & SPM are natural process in nonlinear fiber.

HNLF

- \succ Related to P, y, L, λ separation.
- Process is much faster than that in SOA.
- Passive device.

 $\lambda_A \lambda_C \lambda_B$

 λ_A

Proposed Design for HNLF

True Table

λ_{A}	$\lambda_{\scriptscriptstyle B}$	XNOR AND		Output		
0	0	1	0	1	0	1
0	1	0	0	1	0	0
1	0	0	0	1	0	0
1	1	1	0	1	0	1

Proposed Design for HNLF

Extinction Ratio

Why extinction ratio (ER) is important?

Distinguish different states.

How to increase the value?

- Increase the launched power P.
- Change the material (γ , α , β).
- > Change the wavelengths λ_{A} , λ_{B} , λ_{C} .
- Change the fiber length.

λ_{A}	$\lambda_{\scriptscriptstyle B}$	λ_{c}	P _c (dBm)		
0	0	1	-9.71		
0	1	1	-19.93		
1	0	1	-19.72		
1	1	1	-2.66		

ER = -9.71 – (-19.72) = 10.01 dB

Extinction Ratio

Parameter setting:

- $P_A = P_B = 400 \text{ mW}, P_C = 1 \text{ mW}.$
- λ_A = 192.9 THz, λ_B = 194.7 THz, λ_C = 193.8 THz.
- The bandwidth of BPF is 50 GHz.

Parameters of each nonlinear fiber at 1550nm.

	γ	α	$L_{eff_{max}}$	γL_{eff_max}	L_{eff_lm}	$\gamma L_{eff_{lm}}$	Coupling loss	Dispersion
HNLF	20	0.5	8686	173	1	20.0	0.1	0
Silica holey fiber (HF)	70	190	22.9	1.6	0.978	68.5	-	0
Bismuth-oxide fiber	1100	800	5.4	6.0	0.913	1096.0	2.9	-260
Bismuth-oxide HF	1100	3400	1.3	1.4	0.693	762.8	5.8	40
Tellurite HF	675	400	10.9	7.3	0.955	644.8	-	0
Lead-silicate HF	1860	3000	1.4	2.7	0.722	1343.1	-	210
As ₂ Se ₃ chalcogenide fiber	1200	1000	4.3	5.2	0.893	1071.9	2.9	-504
2	[1/W/km]	[dB/km]	[m]	[1/W]	[m]	[10 ⁻³ 1/W]	[dB/end]	[ps/nm/km]

Future Works

Phase 1:

- Design the feedback, complete the pattern matching system for 100 Gbps ($P_A = P_B = 400 \text{ mW}$, $P_C = 1 \text{ mW}$).
- Use different nonlinear fibers to reduce the launched power and fiber length.
- Go for higher data rate (beyond 100 Gbps), while still achieve the high extinction ratio.

Phase 2:

Exploring the modulation format usage.

Thank you!

Speaker: Ying Tang 02/07/2020