

### **Channel Assignment in Wireless Mesh Networks**

Eiman Alotaibi

Department of Computer Science University of California, Davis

### **References:**

H. Skalli, S. Ghosh, S. Das, L. Lenzini, and M. Conti, "Channel Assignment Strategies for Multiradio Wireless Mesh Networks: Issues and Solutions," IEEE Communications Magazine, pp. 86-93, Nov. 2007.

J. Crichigno, M.-Y. Wu, and W. Shu, "Protocols and Architectures for CA in wireless mesh networks," Ad Hoc Networks, no. 6, pp. 1051-1077, 2008.

## Outlines

- Introduction.
- Channel Assignment:
  - 1. Objective & Challenges.
  - 2. Types
  - 3. Examples.
  - 4. Comparison.





Typical WMN (Single-radio/Single-channel).

Connectivity/Interference.

 802.11 support non-overlapping Multichannel (Single-radio/Multi-channel).

Flexibility/Dynamic switching overhead time & synchronization.

(Multi-radio/Multi-channel).

Throughput improvement/Channel assignment issue.



## Multi-radio/Multi-channel

### Issues:

- 1. Network partitioning.
- 2. Channel Dependency problem.
- 3. Topology alteration and impact on routing.
- 4. Non-convergent behavior.

## **Ripple Effect Problem**



 Revisit the links that already have been assigned channels.



Channel dependency among nodes



## Non-convergent behavior









### **Objective**

Improve network throughput.

## **Challenges**

- Maintain network connectivity.
- Topology control.
- Minimize interference.
- Consider Traffic pattern.
- Channel Utilization.



3 channels 5/15/2008



Fixed (Static) CA

1. Common CA (CCA)

Ch1 Ch2

- Simplest CA scheme.
- All radios in a node are assigned to the same set of channels.
- Maintain connectivity and good performance.
- Fails to utilize the available non-overlapping channels (# of radios < # of channels).</li>





## 2. Varying CA (VCA)

- Radios in different nodes are assigned to different set of channels.
- Examples: C-HYA, CLICA, WFCA-MR, MesTiC, etc.
- Channel utilization based on CA.
- Changing network topology may lead to disconnected network.
- Increase path length.

## Centralized CA for Hyacinth Architecture (C-HYA) [1]









- Given the traffic pattern, estimate total expected load for each link.
- Sort links in decreasing order based on their expected load.
- Assign channels greedily to each link.







## Connected Low Interference CA (CLICA) [2]



- Conflict Graph (CG): each link in the connectivity graph is represented as a vertex in the conflict graph. An edge is created when links interfere with each other.
- Interference is modeled by adding the weights of all edges incident to each vertex in the CG.
- Node priority is selected based on Depth First Search algorithm (nodes found first are higher priority).
- While there is unassigned radio, the algorithm will pair this radio with unassigned radio at one of the neighbors and give it a channel.
- In CLICA, the network topology formulates the CA problem.

Mesh-based Traffic and Interference-aware CA (MesTiC)



- Centralized CA based on Ranking nodes.
- Fixed CA maintain the network connectivity.
- Node Rank based on:
  - 1. Link Traffic (Lt),
  - 2. No. of interfaces per node (R),
  - 3. Min No. of hops to a Gateway (H).
- Rank<sub>n</sub> =  $L_{tn}/(R_n^*H_n)$ .





- Sort nodes based on their ranks in decreasing order.
- Gateway has the highest priority or rank.
- Give the least interference channel for the highest rank node.
- Each node has a default interface that is assign to a default channel.

# MesTiC

- Given 3 channels, 2 interfaces/node.
- Node b is the Gateway.
- Rank in decreasing order is: d, a, c.









- Interfaces can frequently switch from one channel to another.
- When nodes want to communicate, they need to coordinate on a unified channel.
- Utilize many channels in a few interfaces system.
- Switching delay & need coordination mechanism (e.g., rendezvous).

## Distributed CA for Hyacinth Architecture (D-HYA) [3, 4]



- Based on Hyacinth network arch.
- React to traffic load changing.
- Build on a spanning tree network topology (Gateways are the roots).
- No dependency among neighbors (no ripple effect).
- No coordination mechanism is needed.
- Tree topology restriction (multi-path).

D-HYA

### 21

### Neighbor to interface binding:

- which interface to use with which neighbor.
- A node can change its DOWN-NIC channel only, this will eliminate the ripple effect problem. Child-1
- Gateway nodes only have DOWN-NICs.
- CA start with Gateways (highest priority).
- The priority of a node based on the number of hops separate it from the Gateway.



UP-NICS

DOWN-NICS

Child-2

Parent





### 2. Interface to channel binding:

- which channel assigned to which interface.
- Each node sum its interference neighbor's load to calculate the least used channel and assign it to its link.
- Nodes exchange the channel usability status to dynamically reassign channels (every Tc time unit) that are used on lightly loaded links.





- Fixed CA at some interfaces.
- Others are switchable interfaces.
- Use fixed CA to coordinate between nodes.
- Flexible by utilizing channels through switchable interfaces.
- Switching delay.

Link Layer Protocol (LLP) [5]



Switchable

Fixed (Ch1

- Is also known as receiver fixed.
- Each node has a fixed interface assign a unique channel.
- Other interfaces on a node are switchable.

Β

- Based on Traffic, switch the switchable interface to the channel of the fixed node to which need to communicate.
- Coordination protocol is needed to know the fixed channel of each neighboring node.

(Ch2)

5/15/2008

Interference-Aware CA (IACA) [6]



- Using the fixed conflict graph.
- Using Multi-radio Conflict Graph (MCG).
- Each node has a default interface tuned on the default common channel (<u>ensure connectivity</u>).
- Traffic is redirected over the default channel.
- Interference and BW estimation based on number of interfering radios.
- Channels with high rank (high interference, high load) is assigned higher cost.

## IACA





## Comparison



| Property -            | Fixed CA                    |                                |                                      |                             | Hybrid CA                        |                                       | Dynamic CA                                        |
|-----------------------|-----------------------------|--------------------------------|--------------------------------------|-----------------------------|----------------------------------|---------------------------------------|---------------------------------------------------|
|                       | CCA                         | C-HYA                          | CLICA                                | MesTiC                      | LLP                              | IACA                                  | D-HYA                                             |
| Switching<br>time     | No switching<br>required    | No switching<br>required       | No switching<br>required             | No switching<br>required    | Switching over-<br>head involved | Infrequent<br>switching               | Infrequent<br>switching                           |
| Connectivity          | Ensured by the<br>CA scheme | Ensured by<br>the CA<br>scheme | Ensured by<br>the CA<br>scheme       | Ensured by<br>default radio | Ensured by<br>channel switching  | Ensured by<br>default radio           | Ensured by the<br>CA scheme                       |
| Ripple effect         | No                          | Yes                            | No                                   | No                          | No                               | No                                    | No                                                |
| Interference<br>model | N/A                         | Protocol<br>model              | Protocol<br>model                    | Protocol<br>model           | Protocol model                   | Trace driven                          | Trace driven                                      |
| Traffic<br>pattern    | Not<br>considered           | Considered                     | Not<br>considered                    | Considered                  | Not considered                   | Considered<br>from external<br>radios | Considered                                        |
| Topology<br>control   | Fixed                       | Fixed                          | CA scheme<br>defines the<br>topology | Fixed                       | Dynamically<br>chaging           | Fixed                                 | No, topology is<br>defined by the<br>routing tree |
| Control<br>philosophy | N/A                         | Centralized                    | Centralized                          | Centralized                 | Distributed                      | Centralized                           | Distributed                                       |

## **Open Research Issues**



- Multi-rate capability.
- Channel switching delay.
- Quality of service.
- Directional antennas.





- The use of multiple channel can improve the performance of WMN.
- Key: how efficiently utilize the available channels.
- CA and topology planning are related in WMN.





- [1] A. Raniwala, K. Gopalan, and T. Chiueh, "Centralized Channel Assignment and Routing Algorithms for Multichannel Wireless Mesh Networks," ACM Mobile Comp. and Commun. Rev., Apr. 2004, pp. 50–65.
- [2] M. Marina and S. R. Das, "A Topology Control Approach for Utilizing Multiple Channels in Multi-Radio Wireless Mesh Networks," Proc. Broadnets, Oct 2005, pp. 381–90.
- [3] A. Raniwala and T. Chiueh, "Evaluation of a Wireless Enterprise Backbone Network Architecture," *Proc.* 12<sup>th</sup> Hot-Interconnects, 2004.
- [4] A. Raniwala, and T. Chiueh, "Architecture and Algorithms for an IEEE 802.11-Based Multi-Channel Wireless Mesh Network," *Proc. IEEE INFOCOM*, Mar 2005, pp. 2223–34.
- [5] P. Kyasanur and N. Vaidya, "Routing and Interface Assignment in Multi-Channel Multi-Interface Wireless Networks," *Proc. IEEE Conf. Wireless Commun. And Net. Conf.*, 2005, pp. 2051–56.
- [6] K. Ramachandran *et al.*, "Interference Aware Channel Assignment in Multi-Radio Wireless Mesh Networks," *Proc. IEEE INFOCOM*, Apr. 2006.





### Thank you.

## **Channel Assignment**



- Static vs. Dynamic CA
- CA's consideration:
  - Interference-aware
  - Traffic-aware
  - Location-aware

+ optimize channel reusability location.



- Weighted Fixed CA for Multiple Radios.
- Objective: maximize the number of simultaneous transmissions in the network.
- Subject to: Interference constraints and connectivity restrictions.