

Interference-Aware Topology, Capacity, and Flow Assignment in Wireless Mesh Networks

Eiman Alotaibi

Thanks to: Vishwanath, Massimo, Sayeem, Prof. Mukherjee

Department of Computer Science University of California, Davis

- Topology, Capacity, and Flow Assignment (TCFA) is a general network-design problem
- Design a cross-layer solution for TCFA That is:
 - Dynamically allocate resources
 - Self organized
- Design a realistic secondary-interference model

Why Topology Control?

- Wireless links are soft (no physical deployment is required)
- Network topology is not expected to be fixed for a long time
- A good topology design should follow the traffic demand and assign links as needed to serve as much users as possible within a short period of time
- Decreasing number of links on a topology → decreases interference
- Decreasing number of links on a topology → increases delay (increases number of hops)
- With minimum number of links, we can assign different channels to each links to achieve the best performance

In Wireless Mesh Network

Why Topology CFA in WMN?

	Fully connected	Tree	Star
No. of links	high	high low	
Reliability	high	low	low
Interference	high	low	high
Power	high	low	high

Wireless Constraints

Signal-to-Interference-and-Noise Ratio (SINR) Constraint:

$$\frac{G_{(i,j)}P_{(i,j)}}{N_{o} + \sum_{(p,q)\in L_t}I_{(p,q,i,j)}P_{(p,q)}} \geq \beta$$

5/14/2010

Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Wireless Constraints

Secondary Interference Constraint:

 $Link_{I}(J) = \begin{array}{cc} q_{1} & q_{2} \\ p_{1} & 1 \\ p_{2} & 1 & 1 \\ 1 & 1 \end{array}$

- 1. Combined Interfering-links Constraint (1eq)
- 2. Separate Interfering-links Constraint (Aeq)
- 3. Multiple Interfering-links Constraint (Meq)

Combined Constraint

 $C_j + C_{p_1q_1} + C_{p_1q_2} + C_{p_2q_1} + C_{p_2q_2} \le C$

Separate Constraint

Multiple Constraint

 $S_1 = \{ L_{p_1q_1}, L_{p_2q_2} \}$ $S_2 = \{ L_{p_1q_2}, L_{p_2q_1} \}$

$$C_{j} + C_{p_{1}q_{1}} + C_{p_{2}q_{2}} \le C$$

 $C_{j} + C_{p_{1}q_{2}} + C_{p_{2}q_{1}} \le C$

→ 2 equations

J

Secondary-Interference Approaches

- Our approach (Meq) provides more capacity compared to (1eq) approach (reduce Interference)
- Our approach reduces number of equations in the MILP compared to (Aeq) approach (increase processing speed)
- Meq is a More Realistic approach

TCFA Formulation

- Given:
 - Number of nodes and their locations
 - Number of interfaces per node
 - Source-destination traffic demands D_{s,d}
- Minimize: (# of links) + ε (delay)
 - With respect to: $\{C_{i,j}\}$ and $\{\lambda_{i,j}\}$
- Output:
 - Optimal Network Topology

Input Notations

NA	Number of routers		
Ng	Number of Gateways		
Ν	Na + Ng		
С	Maximum radio capacity		
Dsd	Traffic demand of a source-destination pair		
Fj	Number of radio interfaces at node j		
Fjf	Channel assigned to the f-th radio at node j		
W	Number of channels available		
Ej,Sĸ	Set of non-overlapping interfering links at node j		
α	Minimum traffic parameter on any link		
Hmax	Maximum allowed number of hops along a single(s, d)flow		
k	Maximum allowed congestion on any link		

Variable Notations

	WIAR AGAI		
Bij,m	Capacity of Lij over channel m		
Cij	aggregate link capacity of Lij over all channels		
Srci,sd	Up/downstream traffic sourced from node i and issued by (s, o source-destination flow		
Snkisd	Up/downstream traffic sunk at node i and issued by (s, d) source-destination flow		
ľi	Total up/downstream traffic that is sourced or sunk at node i		
λ ij,sd	Amount of traffic on Lij and belongs to (s, d) flow		
λij	Total up/downstream flow on Lij over all (s, d) pairs		
λ	Total traffic on all links		
γij	(binary) = 1, when Lij carries traffic		
γ	Number of links selected to represent the new topology		
hij,sd	(binary) = 1, when L _{ij} is selected to carry traffic along (s, d) flow		

Demand constraints at routers

Total flow at a node

Flow-conservation constraints

TCFA Model

Link-flow constraints

$$\lambda_{ij} = \sum_{\forall (s,d)} \lambda_{ij}^{sd} \quad \forall (i,j)$$

Delay constraints +

$$\lambda = \sum_{\forall (i,j) \in E} \lambda_{ij}$$

TCFA Model

Capacity constraints

$$C_{ij} = \sum_{w=1}^{W} B_{ij}^{w} \quad \forall (i,j)$$

 $\begin{array}{l} \bullet \ \underline{\text{Primary-interference constraints}} \\ \sum_{\forall links \in E} B_{ij}^{F_j^f} + \sum_{\forall links \in E} B_{ji}^{F_j^f} \leq C \quad \forall j, \forall f \end{array}$

Secondary-interference constraints

$$\sum_{\forall i \in A_j} B_{ij}^w + \sum_{\forall p,q \in E_j^{S_k}} B_{pq}^w \le C \quad \forall j, \quad \forall S_k$$

TCFA Model

- Link constraints $\gamma_{ij} \geq \frac{\lambda_{ij}}{G} \quad \forall (i,j)$
- <u>Topology constraints</u> $\gamma = \sum_{\forall (i,j) \in E} \gamma_{ij}$
- Hops constraints

$$\begin{split} h_{ij}^{sd} &\geq \frac{\lambda_{ij}^{sd}}{G} \quad \forall (i,j), \forall (s,d) \quad pairs \\ \sum_{\forall (i,j) \in E} h_{ij}^{sd} &\leq H_{max} \quad \forall (s,d) \quad pairs \end{split}$$

Performance Evaluation: Assumptions

- Single channel
- Single radio per node
- Upstream Traffic (40%)
- Downstream Traffic (60%)
- At least $\frac{1}{2}$ of the traffic served (feasible solution $\alpha = 0.5$)

Performance Evaluation

We study different cases

• We vary:

- Number of hops
- Number of gateways
- Traffic load (per router)
- Two objective functions
- The value of α (Min traffic on each link)

Input Topology (mesh)

Result: Interference approaches

Result: Interference approaches

Result: Interference approaches

Result: Multi-hop

Result: Multi-hop

Normalaized Network Delay (6 Mbps) 1 0.9 0.8 **Normalaized Delay** 0.7 Aeq 0.6 0.5 Meq 0.4 Ieq 0.3 0.2 0.1 0 2 3 5 6 8 10 4 No. of Hops

Result: Multi-GW

Result: Multi-GW

Result: The value of (a)

Normalized Maximum Throughput

Result: TCFA Efficiency

- Design a Dynamic and self organize TCFA solution for WMN
- Deploy realistically the impact of the interference on the link capacity
- TCFA dramatically improves the performance of WMN
- The selection of no. of hops is essential

Thank you

Backup Slides

Cross-Layer Design

- CA in wireless network should also take into account Interference
- Interference depends on
 - Topology
 - PHY Layer technology
 - Antenna Beam pattern
- Benefits of Cross Layer Design
 - PHY layer limitations are considered
 - Network resources are utilized to the best possible extent
- 5/14/2010 Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Network Design Problems

Proble	em	Given	Minimize	w.r.t	s.t		
CA		τ, λ _{i,j}	Т	C _{i,j}	D		
FA		т, С _{і,ј}	Т	λ _{i,j}	$0 \le \lambda_{i,j} \le$		
		-		-	μC _{i,j}		
CFA		Т	Т	$C_{i,j}, \lambda_{i,j}$	D		
TCF	۹.	-	T	τ. C _{i i} . λ _{i i}	D		
$-\tau = $ Network Topology $-\lambda_{i,j} = $ flow on link (i,j)							
- μ = average packet size - $C_{i,i}$ = capacity of link (i,j)							
- T = Average System Delay							
- D = Maximum cost							
$\sum_{i,j} d_{i,j} \left(C_{i,j} \right) = D$							
	(i,j)∈E						

5/14/2010

Complexity

Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Channel, Capacity, and Flow Assignment (CCFA)

- Given:
 - Network Topology, source-destination demands γ_{s,d}
 - Number of non-overlapping channels K
 - Number of Network Interface Cards (NICs) on each node q_i
- Minimize: T
- With respect to: $\{C_{i,j}\}$, $\{\lambda_{i,j}\}$, and $H_{i,j} \in \{1, \dots, K\}$

Network Utility

Efficiency of a WMN

$$\eta = \frac{\text{Total Throughput}}{\text{Total Demand}} = \frac{\gamma}{D} = \frac{\sum \gamma_{s,d}}{\sum D_{s,d}}$$

Utility U is defined to include both throughput and delay

$$U = \frac{\eta^{Em}}{T}$$

- Em = " Throughput emphasis factor "
 - How much is throughput emphasized over delay
- Generalized version of Kleinrock's "Power" of a network

5/14/2010 Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Overall CCFA Algorithm

5/14/2010

Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi