

A Topology Control in Wireless Networks

Eiman Alotaibi

Department of Computer Science University of California, Davis

Network Design Problems

Complexity

_	Problem	Given	Minimize	w.r.t	s.t		
	CA	τ, λ _{i,j}	Т	C _{i,j}	D		
	FA	т, С _{і,ј}	Т	λ _{i,j}	0 ≤ λ _{i,j} ≤ μC _{i,i}		
	CFA	Т	Т	$C_{i,j}, \lambda_{i,j}$	D		
	TCFA	_	Т	τ. C _{i i} . λ _{i i}	D		
1	$\begin{array}{ll} -\tau = \text{Network Topology} & -\lambda_{i,j} = \text{flow on link (i,j)} \\ -\mu = \text{average packet size} & -C_{i,j} = \text{capacity of link (i,j)} \end{array}$						
	-T = Ave	- T = Average System Delay - D = Maximum cost					
	- D = Ma						
		$\sum d_{i,j}(C_{i,j}) = D$					

11/13/2009 Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

(i,j)∈E

In Wireless Mesh Network

- Each radio has a limited capacity
 - This can be used as a constraint instead of Cost Constraint
- Wireless Channel is a shared channel
- Interference limits the effective capacity

Cross-Layer Design

- CA in wireless network should also take into account Interference
- Interference depends on
 - Topology
 - PHY Layer technology
 - Antenna Beam pattern
- Benefits of Cross Layer Design
 - PHY layer limitations are considered
 - Network resources are utilized to the best possible extent
- 11/13/2009 Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Wireless Constraints

Signal-to-Interference-and-Noise Ratio (SINR) Constraint:

$$\frac{G_{(i,j)}P_{(i,j)}}{N_{o} + \sum_{(p,q) \in L_{t}} I_{(p,q,i,j)}P_{(p,q)}} \geq \beta$$

11/13/2009

Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Channel, Capacity, and Flow Assignment (CCFA)

- Given:
 - Network Topology, source-destination demands γ_{s,d}
 - Number of non-overlapping channels K
 - Number of Network Interface Cards (NICs) on each node q_i
- Minimize: T
- With respect to: $\{C_{i,j}\}$, $\{\lambda_{i,j}\}$, and $H_{i,j} \in \{1, \dots, K\}$

Network Utility

Efficiency of a WMN

$$\eta = \frac{\text{Total Throughput}}{\text{Total Demand}} = \frac{\gamma}{D} = \frac{\sum \gamma_{s,d}}{\sum D_{s,d}}$$

Utility U is defined to include both throughput and delay

$$U = \frac{\eta^{Em}}{T}$$

- Em = "Throughput emphasis factor "
 - How much is throughput emphasized over delay
- Generalized version of Kleinrock's "Power" of a network

11/13/2009 Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Overall CCFA Algorithm

Channels, Capacities, and Flows

11/13/2009 Ref: Channel, Capacity, and Flow Assignment in Wireless Mesh Networks Presentation, by Vishwanath Ramamurthi

Topology CFA

- Given:
 - Number of nodes and their locations
 - Number of interfaces per node
 - Source-destination traffic demands $\gamma_{s,d}$
- Minimize: T
 - With respect to: {C_{i,j}}, { $\lambda_{i,j}$ }, and τ
- Output:
 - Optimal Network Topology

Why Topology CFA in WMN?

	Fully connected	Tree	Star
No. of links	high	low	low
Reliability	high	low	low
Interference	high	low	high
Power	high	low	high

Algorithm

Step1: Start with a fully connected Network

- Step2: Apply CCFA
- Step3: for each node ni, sort (in a descending order) the outgoing-link capacities
- **Step4:** Select the minimum third-link capacity among all nodes to be the value of the threshold capacity (Cth)
- **Step5:** Eliminate links with capacities less than a threshold (C_{ij} < C_{th}), create new topology. If no link is eliminated, then stop and output the topology
- **Step6:** Redistribute the capacities and flows of the deleted links by repeating steps 2-5 (input topology for step 2 in each iteration will be changed)

Topology CFA

12

- Maintain at least 2-connected network
- Cth has to be less than the second biggest link capacity adjacent to any node
- Cth is the third minimum link capacity among all nodes

Threshold (Cth)

<u>R1</u>	<u> R2</u>	5
C15 = 11	C25 = 9	R_1 R_2 R_3 R_4 R_3
C14 = 10	C24 = 7	
C13 = 5	C23 = 4	
C12 = 1	C21 = 1	
		12
• <u>R3</u>	<u> </u>	• <u>R5</u>
C35 = 10	C45 = 12	C54 = 12
C34 = 8	C41 = 10	C51 = 11
C31 = 5	C43 = 8	C53 = 10
C32 = 4	C42 = 7	C52 = 9

11/13/2009

Testbed layout (distances)

Tested Topologies

Tree Topology

4-connected Topology

Star Topology

Tested Topologies

Option 2 Topology

- All links are located within one interference range
- Single channel
- Single radio per node
- Traffic at each node follow the same pattern (Du(i) = Dd(i) = xMbps)

Results (2Mbps)

Results (12Mbps)

Results (54Mbps)

Tested Topologies

Option 2 Topology

Results

11/13/2009

- Test the following cases:
 - varies number of radios (available capacity)
 - varies number of links
 - varies the transmission power
 - multi-channel
- Develop TCFA mathematical equations

Thank you